Online Multi-Object Tracking With Visual and Radar Features
نویسندگان
چکیده
منابع مشابه
Online Domain Adaptation for Multi-Object Tracking
Automatically detecting, labeling, and tracking objects in videos depends above all on accurate category-level object detectors. These might, however, not always be available in practice, as acquiring high-quality large scale labeled training datasets is either too costly or impractical for all possible real-world applications. A scalable solution consists in re-using object detectors pre-train...
متن کاملEfficient Visual Object Tracking with Online Nearest Neighbor Classifier
A tracking-by-detection framework is proposed that combines nearest-neighbor classification of bags of features, efficient subwindow search, and a novel feature selection and pruning method to achieve stability and plasticity in tracking targets of changing appearance. Experiments show that near-frame-rate performance is achieved (sans feature detection), and that the state of the art is improv...
متن کاملRadar Detection Improvement by Integration of Multi-Object Tracking
This paper presents a new and simple approach to the problem of multiple sensor data fusion. We introduce an efficient algorithm that can fuse multiple sensor measurements to track an arbitrary number of objects in a cluttered environment. The algorithm combines conventional Kalman filtering techniques with probabilistic data association methods. A Gauss Markov process model is assumed to handl...
متن کاملOnline Visual Tracking via Coupled Object-Context Dictionary
Sparse representation and context information have been extensively applied in visual tracking. In this paper, we make the most of context information outside the target bounding box to construct the distinct background dictionary. The pure target dictionary is then constructed by filtering out background patches from the target bounding box. At each frame, all relevant patches are encoded by t...
متن کاملOnline Visual Multi-Object Tracking via Labeled Random Finite Set Filtering
This paper proposes an online visual multi-object tracking algorithm using a top-down Bayesian formulation that seamlessly integrates state estimation, track management, clutter rejection, occlusion and mis-detection handling into a single recursion. This is achieved by modeling the multi-object state as labeled random finite set and using the Bayes recursion to propagate the multi-object filte...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2020
ISSN: 2169-3536
DOI: 10.1109/access.2020.2994000